Python AI, ML etc



### 1. Input and Output in Python
   - The `input()` Function:
     - Accepting user input as strings or converting them to other types (int, float, etc.)
     - Using input for collecting user-defined data
   - The `print()` Function:
     - Displaying output to the console
     - Printing multiple values, strings, numbers, and variables
   - String Formatting:
     - Using f-strings for inserting variables into strings
     - Performing calculations and formatting numbers with f-strings
   - Examples:
     ```python
     name = input("Enter your name: ")
     age = int(input("Enter your age: "))
     print(f"Namaste {name}, you are {age} years old.")
     ```

### 2. Python Basics
   - Introduction to Python
   - Data Types and Variables
   - Control Structures (if-else, loops)
   - Functions and Modules
   - List Comprehensions and Lambda Functions

### 3. Python Data Structures
   - Lists, Tuples, Dictionaries, and Sets
   - String Operations
   - File Handling
   - Using `input()` for dynamic data structure creation and `print()` for displaying them

### 4. Numpy for Numerical Computing
   - Numpy Arrays and Array Operations
   - Mathematical and Statistical Functions
   - Broadcasting and Vectorization

### 5. Pandas for Data Manipulation
   - Series and DataFrames
   - Data Cleaning and Preprocessing
   - Handling Missing Data
   - Grouping, Aggregation, and Pivot Tables

### 6. Data Visualization
   - Introduction to Matplotlib and Seaborn
   - Line Plots, Bar Charts, Histograms
   - Heatmaps, Pairplots, and Scatterplots

### 7. Introduction to Machine Learning
   - Overview of Machine Learning
   - Supervised vs. Unsupervised Learning
   - Key Terminologies (Features, Labels, Models)

### 8. Scikit-Learn for Machine Learning
   - Linear and Logistic Regression
   - K-Nearest Neighbors (KNN)
   - Decision Trees and Random Forests
   - Support Vector Machines (SVM)
   - Model Evaluation (Cross-Validation, Confusion Matrix, ROC-AUC)

### 9. Clustering and Dimensionality Reduction
   - K-Means Clustering
   - Hierarchical Clustering
   - Principal Component Analysis (PCA)

### 10. Working with Large Datasets
   - Data Wrangling with Pandas
   - Feature Engineering and Feature Selection
   - Dealing with Imbalanced Data (SMOTE, Oversampling)

### 11. Deep Learning with TensorFlow and Keras
   - Introduction to Neural Networks
   - Backpropagation and Gradient Descent
   - Building Neural Networks with Keras
   - Convolutional Neural Networks (CNNs)
   - Recurrent Neural Networks (RNNs)

### 12. Natural Language Processing (NLP)
   - Text Preprocessing (Tokenization, Stop Words)
   - Bag of Words (BoW) and TF-IDF
   - Word Embeddings (Word2Vec, GloVe)
   - Text Classification with NLP

### 13. Time Series Analysis
   - Time Series Data and Trends
   - ARIMA and SARIMA Models
   - Forecasting Future Trends

### 14. Reinforcement Learning (Optional Advanced)
   - Introduction to Reinforcement Learning
   - Q-Learning and Deep Q-Networks (DQN)
   - Markov Decision Processes

### 15. Model Deployment and Monitoring
   - Exporting Models for Production (Pickle, Joblib)
   - Model Serving with Flask or FastAPI
   - Monitoring Model Performance Over Time

### 16. Ethics and Bias in AI
   - Understanding Bias in Data and Models
   - Fairness and Transparency in AI
   - Responsible AI Practices



Contact us for software training, education or development










 

Post a Comment

0 Comments

Me