📊 Introduction to NumPy for Statistics
NumPy (Numerical Python) is a foundational Python library for numerical and statistical analysis. It's lightning fast with large datasets and widely used in machine learning and AI workflows.
🧠 Why Use NumPy?
- Handles arrays, matrices, and numerical computations efficiently
- Performs statistical operations like mean, median, std dev, percentiles
- Works well with pandas, matplotlib, and scikit-learn
Install NumPy via pip:
pip install numpy
✅ Example 1: Mean, Median, Mode
import numpy as np
from scipy import statsdata = [10, 20, 20, 30, 40]
mean = np.mean(data) median = np.median(data) mode = stats.mode(data)
print("Mean:", mean) print("Median:", median) print("Mode:", mode.mode[0], " (Count:", mode.count[0], ")")
✅ Example 2: Standard Deviation, Variance, Range
import numpy as npdata = [5, 10, 15, 20, 25]
std_dev = np.std(data) variance = np.var(data) range_val = np.max(data) - np.min(data)
print("Standard Deviation:", std_dev) print("Variance:", variance) print("Range:", range_val)
✅ Example 3: Quartiles and IQR (Interquartile Range)
import numpy as npdata = [12, 15, 14, 10, 18, 20, 25, 22]
q1 = np.percentile(data, 25) q2 = np.percentile(data, 50) q3 = np.percentile(data, 75) iqr = q3 - q1
print("Q1:", q1) print("Q2 (Median):", q2) print("Q3:", q3) print("IQR:", iqr)
📘 Summary of Functions
np.mean()
→ Meannp.median()
→ Medianscipy.stats.mode()
→ Modenp.std()
→ Standard Deviationnp.var()
→ Variancenp.percentile()
→ Quartiles, Percentiles
0 Comments